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A B S T R A C T

Natural phytochemicals absorption and metabolic process are mainly in the human gut. Simulating the absorption and
metabolism of natural phytochemicals in vitro to predict the rate and degree of absorption of natural phytochemicals provides
convenience for many researchers. However, in this process, many physiological factors in vitro are affected, such as stomach
and intestinal juice composition, pH, intestinal transmission rate and so on. In recent years, the research methods have gradually
improved to make these models more suitable for the natural phytochemicals absorption process, in vitro simulation models
have become an essential means to study natural phytochemicals absorption. Therefore, this paper introduces the advantages
and disadvantages of commonly used in vitro simulation models of natural phytochemicals absorption and metabolism, as well
as briefly introduces the working principle of each model. To provide a theoretical basis for simulating natural phytochemicals
absorption in vitro and development and utilization of natural phytochemicals.

© 2021 The Authors. Publishing services by Visagaa Publishing House
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1. INTRODUCTION

Natural phytochemicals, often referred to as phytonutrients, are
natural bioactive components rich in foods like vegetables, fruits,
whole grain products, nuts, and seeds [1].Themost common type of
food plant chemicals include polyphenols, carotenoids, flavonoids,
coumarin, indole, isoflavone, lignans, organic sulfur, catechins,
phenolic acid, styrene, isothiocyanates, saponins, procyanidins,
styrene acrylic element, anthraquinone, ginseng saponin and
so on [2–4]. The research shows that natural phytochemicals
have cancer prevention, oxidation antiviral ability [5, 6]. Natural
phytochemicals provide unique and renewable resources for the
discovery of potential new functional foods and new biological
activities [7–9]. It changes in the mouth, stomach and intestine,
and is finally absorbed by the lymphatic circulation or blood
through the intestinal epithelial cells, some that are difficult to
digest can reach the colon and be broken down by bacteria [10]
(Figure 1). It is necessary to understand the structure of the in
vitro gastrointestinal model, as well as absorption characteristics, to
improve the theoretical basis for the development of new resource
foods.

In vitro system is a research system developed according to
the physiological function of human gastrointestinal tract [11],
which can simulate the digestion and absorption of natural
phytochemicals in vivo. In the current research, it is usually

characterized by substitution, simplification and accuracy [12].
In the early stage of natural phytochemicals development, in
vitro gastrointestinal absorption is an ideal method to simulate
natural phytochemicals absorption and metabolism, which can
accurately predict the reaction process of natural phytochemicals
in vivo, thus improving the success rate of natural phytochemicals
developers and natural phytochemicals absorption scholars [13–
16]. At present, most of the methods used are cell models, everted
gut sac, in situ intestinal segments, and Ussing chamber [17–19].
The liver is one of the metabolic organs of human body, and most
natural phytochemicals must be removed by liver metabolism to
study metabolism [20, 21]. To research liver metabolism and liver
toxicity in vitro, including primary hepatocytes, immortalized cell
lines (Hep3B, HuH7, HepG2, and HepG), sperm liver slices and so
on [22–24]. With further development, many dynamic models have
been developed [25], such as the dynamic gastrointestinal model,
different atrioventricular models are used to simulate different
states of intestinal absorption, and the influence of intestinal velocity
on natural phytochemicals absorption and metabolism is further
simulated based on the applied force [26, 27]. The latest 3D model
enables researchers to observe the absorption of intestinal epithelial
cells more intuitively [28, 29]. This paper introduces and discusses
the research progress of natural phytochemicals absorption and
metabolism models in vitro, and evaluates their advantages and
disadvantages.
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Figure 1 | Absorption and metabolism of natural phytochemicals in
human body.

2. THE IN VITRO MODELS FOR NATURAL
PHYTOCHEMICALS ABSORPTION

2.1. Cell model

The intestinal epithelial cells are the absorption cells of intestinal
epithelium, which constitute most of the intestinal epithelium [30,
31]. Water, inorganic salts, vitamins and other nutrients are
absorbed through intestinal epithelial cells [32, 33]. There are many
cell models to study natural phytochemicals absorption, including
(Caco-2, HT29-MTX, MDCK, TC-7 Cell models and so on )
strike a balance between accuracy (simulating a natural reaction
environment) and efficiency [34] (Table 1). And the Caco-2 cell line
is the most commonly used model of intestinal epithelial detection
system in vitro [35–37]. It derived from human epithelial colorectal
adenocarcinoma cells, when Caco-2 cells differentiate and polarize,
their structure and biochemical function are similar to intestinal
cells, very close to normal human intestinal epithelium [38].
Therefore, Caco-2 cell model is a reliable in vitromodel to study the
intestinal absorption and metabolism of natural phytochemicals,
and is also a powerful tool to clarify the mechanism of natural
phytochemicals absorption [39, 40]. Boyer et al. [41] used Caco-2
cells to test the uptake of quercetin 3-glucoside and quercetin 3-
glucoside as purified compounds and extracts from whole onion
and apple skins. It concluded that Caco-2 cells absorbed a small
amount of quercetin 3-glucoside from extracts from apple skins,
but the absorption of quercetin 3-glucoside was not detected.
Chen et al. [42] evaluated the absorption rate and mechanism of
Avenanthramides (AVNs) by using the Caco-2 cell model, AVNs
transported the Caco-2 monolayer by paracellular diffusion and
were affected by monoamine oxidase and efflux transporters (P-gp,
MRP2) during absorption. In conclusion, transported by passive
diffusion (especially with high permeability), the permeability
measured by cell model is consistent with that of human body.

The primary cells obtained through purification and isolation will
also lose their original functions and characteristics after 2D culture
in vitro. The emergence of 3D co-culture solves these problems
well [43–46] (Figure 2 a). The co-culture of Caco-2 cells and
HT29-MTX cells, compared with Caco-2 cells, the connections

between HT29-MTX cells are not so tight, so this advanced
model is considered to be a more suitable model than Caco-2
cell monolayer model [47, 48]. In addition, A triple co-culture
model was proposed, including Caco-2, Raji-B and HT29-MTX
cell, is closer to intestinal epithelium because Raji-B can induce the
phenotype of M cells, and HT29-MTX cells are similar to goblet
cell [49]. These three kinds of cells are the same as the human
intestine, and they are simulated closer to the human body [50].
Selby-Pham et al. [51] use co-cultures of Caco-2 and HT29-MTX-
E12 cells were used to determine the apparent permeability (Papp)
of dietary phytochemicals extracts in the single layer of co-cultured
cells. Organoids culture is another type of 3D culture, embryonic or
adult stem cells are cultured in vitro to proliferate and differentiate
into organ-like 3D cell clusters with certainmorphological structure
and functions [34]. The small intestine organoid, in particular,
is currently an advanced technique in vitro model studies of
physiological and pathological mechanisms (Figure 2b). It can
replicate tissue morphology and physiological functions in vivo
by maintaining key physiological conditions and functions of the
gut over a long period of time (e.g. crypt and villi formation,
cytochrome P-450 metabolic activity, mucus secretion) [52]. Today,
several 3D organ-type cultures have been developed to replicate
various organs involved inGITdigestive tract, such as pancreas [53],
stomach [54], and intestine [55]. Recently, remarkable progress
in developing 3D cell culture platforms have been achieved by
mimicking fundamental physiological cues present in the in vivo
native tissue.

Figure 2 | Schematic illustration of3D co-culture (a); Schematic
illustration of organoid culture of small intestine (b).

2.2. Ex vivo model

Ex vivomodel of excising intestinal segments provides a theoretical
means for human intestinal absorption [71]. They include everted
intestinal sac [72] and the Ussing chamber [73]. The main
advantages of using human intestinal tissue are to maintain the
shape and structure, as well as the expression of enzymes in natural
phytochemicals metabolism and transporters reflecting the state of
the body [74]. The U.S. FDA recommended that excised human
intestinal tissue be used in osmotic research in vitro [75].
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2.2.1. Everted intestinal sac
Wilson and Wiseman put forward the model of everted intestinal
sac, the basic steps to take a certain length of intestine(e.g.
intestines of rat, dog) end ligation, layer and flip the intestine
mucosa and serosa layer, ligation on the other side, the formation
of intestinal sac, to the blank buffer into my gut sac (receptor
side), and then puts intestinal sac containing drug buffer (donor),
access to the entire unit carbon gas put in 37 ◦C constant
temperature water bath, Periodic sampling from the intestinal sac
for examination [76] (Figure 3a). It can use to explore the effects of
absorption, metabolism or transformation in gastrointestinal tract,
efflux transport, interaction between natural plant compounds and
absorption of efflux transport regulators [77]. In the latest research,
Wang et al. [78] discussed the absorption of helicid in different
intestinal segments based on the rat model of turning intestinal
sac in vitro, and concluded that duodenal segment was the main
part of absorption and metabolism of helicid in different intestinal
segments. Liu et al. [79] studied the intestinal absorption properties
of Polygonum orientale extract in normal rats and myocardial
ischemia rats by using intestinal capsule eversion model, the results
showed that all components in polygonum orientale extract could
be absorbed by the intestinal capsule. Therefore this method is that
because of the small size of the serosa layer in the intestinal sac, the
drugs in the mucosal layer can be concentrated on the serosa side
after being transported through the intestinal segment, which is easy
to detect [80], the disadvantage is that the residual mucosa muscle
layer may lead to drug adhesion, which makes the determination
result low, intestinal fluid stagnation, and morphological damage of
everted intestinal tissue, etc [81, 82].

2.2.2. Ussing chamber system
The Ussing chamber system was made up of a chamber and a
perfusion system [83]. The operation procedure is to take the
target isolated intestine segment and cut it into an appropriate
intestine segment, which is fixed in the sample holder (a) and
installed between two diffusion pools (b). One side of the two
diffusion pools was filled with drug-containing buffer (donor side),
and the other side was filled with blank buffer (recipient side),
and carbon gas was passed through the vent (C) to maintain
intestinal tissue activity [84, 85](Figure 3b). Cardinali et al. [86]
used the Ussing chamber system technique to study the intestinal
absorption of verbascoside triosaponin. Rtibi et al. [87] used
this system to predict the absorption of ncarob pod aqueous
extracts on gastrointestinal transit (GIT) and intestinal epithelium
permeability. This method can simulate the mucosal layer, one
of the main absorption barriers, and make up for the deficiency
that the everted intestinal sac method is easy to change the cell
morphology and affect the permeability [88], the experimental
period is short, simple operation and strong controllability, and is
more suitable for rapid determination of natural phytochemicals
intestinal permeability [89]. However, the sample processing
process is complicated, which reduces the activity of enzymes in
intestinal tract and may affect the permeability of some natural
phytochemicals [90]. Despite these defects, Ex vivo methods are
simple and widely used in the design and testing of potential natural
phytochemicals.

Figure 3 | Schematic illustration of everted intestinal sac (a); Schematic
illustration of Ussing chamber (b).

2.3. Artificial membrane model

PAMPAmodel (Parallel ArtificialMembraneAssay)was established
by Kansy et al. [91] It is usually used to simulate different
biomembranes by diffusing different lipid solutions on sandwich
structures, and then to predict transmembrane absorption by
measuring permeability [92](Figure 4). This is another method
for determining gastrointestinal permeability in the screening of
new natural phytochemicals, which has the advantages of high
throughput, low cost, convenient and flexible detection means
and so on [93]. Petit et al. [94] used hexadecane membrane
parallel artificialmembrane (HDM-PAMPA) tomeasure the passive
intestinal absorption of Angelica archangelica, Waltheria indica,
Pueraria montana var. lobata. The effective passive permeability
NPs obtained by parallel artificialmembrane is alsoworthy of giving
priority to the separation of bioactive compounds in the early stage
of drug discovery, so as to verify whether it is known that the
biological activity principle of medicinal plants has good potential
for passive absorption [95]. However, there are some limitations,
such as only a single passive diffusion mechanism, unable to
accurately predict natural phytochemicals permeability through
active transport mechanism, and inability to simulate complex in
vivo environment, which leads to inaccurate results [96]. In recent
years, researchers have optimized the reference drug, phospholipid
ratio, buffer, pH value, concentration and permeation time on the
basis of traditional PAMPA to get a more accurate model [97, 98]
(Table 2). It can also be combined with the Caco-2 cell model and
MDCK cell model, which is also an effective solution to avoid the
above problems [99].

Figure 4 | Schematic illustration of parallel artificial membrane
permeability assay (PAMPA).
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Table 2 | Characteristics of PAMPA models.
Assay Main lipid constituents (w/v%

dissolved in solvent)
Solvent Donor–

acceptor
buffer

Buffer additive Ref.

Egg-PAMPA 10% egg lecithin, cholesterol n-Dodecane Same Bile salt in donor [90]
HDM-PAMPA 100% n-hexadecane n-Hexadecane Same None [99]
DOPC-PAMPA 2% dioleylphophatidylcholine

(synthetic)
n-Dodecane Same None [100]

BM-PAMPA 0.8% phosphatidylcholine, 0.8%
phosphatidylethanolamine, 0.2%
phosphatidylserine, 0.2%
phosphatidylinositol, 1%
cholesterol

1,7-Octadiene Same None [101]

DS-PAMPA 0.8% phosphatidylcholine, 0.8%
phosphatidylethanolamine, 0.2%
phosphatidylserine, 0.2%
phosphatidylinositol, 1%
cholesterol

1,7-Octadiene Same None [101]

2.4. Dynamic gastrointestinal model

In vitro gastrointestinal simulation system is a biological research
system that simulates food digestion behaviour based on
physiological functions of the human gastrointestinal tract [102].
It is often used for the substitute test research of living organisms.
It has the advantages of simple operation, convenience, safety,
rapidity and so on [103]. Most gastrointestinal simulation systems
add amylase, mucin, inorganic salts, pepsin, organic acids, bile,
trypsin and simulated oral cavity (optional simulation items)
and gastrointestinal physiological conditions in order in the
container, based on the physiological conditions of human body,
a gastrointestinal simulation system is constructed [104]. The
dynamic gastrointestinal simulation system fully considers the
influence of gastrointestinal micro-ecosystem on food digestion
in the application research of simulating human gastrointestinal
digestion behaviour [105].The simulation is higher, and it is close to
the real gastrointestinal digestion of the human body; it can be well
used for in vitro gastrointestinal simulation of food digestion [103].
In recent years, commonly used in vitro gastrointestinal models
are The TIM Model (TNO Gastro-Intestinal Model) [106] and
SHIME (The Simulator of the Human Intestinal Microbial
Ecosystem) [107]. People have explored many valuable studies on
natural plant nutrients by using them.

TIM model is a multi-chamber dynamic model, Tim-1 is the
most frequently used configuration of the Tim platform [108]
(Figure 5a). It aims to simulate the dynamic conditions in
gastrointestinal tract, such as time, pH change, real secretion,
digestive juice composition and other physiological parameters. It
can also stimulate the flow of human body temperature, saliva,
gastric juice and pancreas, and simulate specific conditions, such
as age, diet type and human health or disease state [109]. TIM-1
model was used to evaluate the dynamic bioavailability of curcumin
in Pickering emulsion with and without encapsulation. Combined
with two in vitro models, the influence of Pickering emulsion with
stable starch particles on the bioavailability of curcumin was fully
revealed [110].

SHIME model is one of the few intestinal models that simulate
the whole gastrointestinal tract, including stomach, small intestine

and different colon areas [111]. It combines the conditions of the
upper digestive tract, resulting in five continuous chambers that
simulate the upper digestive tract (stomach, small intestine) and
the lower digestive tract (ascending, transverse and descending
colon) [107] (Figure 5b). Van den Abbeele et al. [112] used these
two models SHIME and TIM, how long-chain arabinoxylan (LC-
AX) and inulin (IN) regulate the production of short-chain fatty
acids and the composition of Bifidobacterium were compared.
Truchado et al. [113] used Mucus-SHIME model to study the
regulatory effect of long-chain arabinoxylan (LC-AX) on intestinal
and mucosal microflora. LC-AX may be potentially beneficial to
host health by stimulating the abundance and metabolic activity of
Bifidobacterium.

At present, there are still many shortcomings and limitations
in domestic in vitro gastrointestinal simulation systems, and the
change of a single factor (e.g. temperature, pH, and fermentation
time) will have a great influence on the research results. Therefore,
it will be a great challenge to establish a complete and satisfactory in
vitro human gastrointestinal simulation system to study the uptake
of phytochemicals.

2.5. Intestinal 3D in vitro modelling

Organotypic intestinal models are an attractive middle ground
between in vitro and in vivo systems because they include the
three-dimensional architecture of the gut wall while still providing
easily controllable experimental parameters [114] (Figure 6).
Microfluidic tissue-on-a-chip devices provide powerful alternatives
for modelling physiological systems. Such devices show promise
for use in GI research [115]. The combination of fluid flow and
3D reconstruction of intestinal microstructure induced intestinal
epithelial cells to behave more like native tissue [116]. Based on the
static Transwell model, gut on a chipmicrofluidic devices have been
developed that allow a continuous infusion of media on opposite
sides of the cellular porous membrane that represents the intestinal
epithelial barrier [117]. The addition of microfluidics to these
devices improves cell viability and longevity, continuously removes
toxic cellular waste, and allows control of nutrient delivery [118].
More recently, microorganisms have been incorporated into a
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Figure 5 | Schematic illustration of TIM-1(a); Schematic illustration of SHIME model.
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number of in vitro microfluidic gut models by generating oxygen
gradients between microfluidic channels [119]. In fact, intestinal
3D in vitro modelling has been tested with solid biopsies of the
intestine. Yissachar et al. [120] adjusted the gas-liquid interface
culturemodel to amicrofluidic format to prevent the loss ofmucosal
structure at 40 h. Dawson et al. [121] reported microfluidic culture
of perforated human intestinal segments, in which the luminal
and serosal sides were infused with medium for 72 h. Richardson
et al. [115] used a microfluidic organotypic device (MOD) that
enables media flow with differential oxygen concentrations across
luminal and muscular surfaces of gut tissue ex vivo. Tissue was
shown to be viable for 72 h and lowering oxygen concentration to
a more physiologic level impacted bacterial populations. Magnetic
alginate microspheres (MAM) and chitosan as magnetic alginate
microspheres (CAM) were studied by droplet microfluidic device,
under the condition of moderate control release, this microfluidic
technology for micro/nano particles of controllable synthesis
provides a convenient and efficient fluid design [122], for natural
phytochemicals controlled release, and slow-release provides a
potential choice. Although the organotypic intestinal culture model
lacks the nerve, immune and muscle components of the intestinal
wall, it can simulate the dual flow of the intestinal lumen and
vascular system, and more closely reproduce the in vivo physiology
of the intestinal wall than other in vitro models [123]. Organotypic
intestinal culture models can clearly demonstrate a new technology
paradigm that can open applications in the field of food technology,
or for the analysis of some types of natural plant materials.

Figure 6 | Schematic illustration of microfluidic tissue-on-a-chip
devices.

3. THE IN VITRO MODELS FOR NATURAL
PHYTOCHEMICALS METABOLISM

3.1. Immortalized cell lines

Human hepatocytes are considered the gold standard of the human
liver model in toxicology research [124]. There are also frozen the
human hepatocytes on the market. However, these cells have a high
cost, limited availability and significant differences in CYP activities
among individuals [125]. Most of the available liver-derived
immortalized cell lines do not possess phenotypic characteristics
of the liver tissue [126]. Common immortalized liver-derived cell
lines in use are Fa2N-4, HepG2, Hep3B, PLc/PRFs Huh7, HBG,
and HepaRG [127]. HepG2 cell is a representative established
hepatoma cell line [128]. The expression of cytochrome P450
(P450) enzymes, transporter proteins, and transcription factors

were stable in differentiated HepaRG cells over a period of 6 weeks
when cultured with DMSO [129]. In the identification of plant
active components with protective effects on the liver, Thabrew
et al. [130] incubated various hepatic toxins with HepG2 cells in
96-well microtitre plates, and used the crude extract of a known
protective liver plant Osbeckia aspera and two pure established
protective liver plant compounds-catechin and silymarin, tested the
protective effect of these drugs on a toxic injury. Mohammed et
al. [131] have analyzed the antiproliferative effect of ethyl acetate
fraction of Anethum graveolens L. (dill) on the HepG2 cell line.
HepG2 continues to find application in the evaluation of a range of
nutritional factors, including spice constituents, soybean derivatives
and tuber essential oils, as well as providing a means of evaluating
medicinal materials from natural sources. Still, the expression of
liver-specific functions in HepG2 cell is still much lower on average
than that of primary hepatocytes, and they represent a phenotype
from a single donor, thereby reducing their predictive value for the
human population [132].

3.2. Precisely cut the liver slice model

PCLS (Precise cut liver slices) for humans or other animals (e.g.
mice) retain the structure and cellular components of the natural
liver, and it involves the cutting of viable, ultrathin (around 100-
250 µm thick) liver slices. Representing an improved system
for studying liver fibrosis compared with two-dimensional single
culture or co-culture [133]. As this may be an interesting tool
not only for the investigation of hepatotoxic and protective effects
but also for bio guided fractionations schemes, the usefulness of
PCLS was compared with an in vivo test of liver function. [134].
However, the PCLS model has some limitations. For example,
there is a lack of infiltrating immune cells to regulate the disease
process [135]. In addition, liver slices are unsuitable for rapid
screening applications [136]. A study successfully used isolated liver
slices treated with bile acid to simulate cholestatic liver injury, and
finally evaluated the mechanism of liver fibrosis [137]. In addition,
PCLSs culture has opened up a new way for high-throughput
experiments and provided a new strategy for studying the specific
molecular characteristics of metabolic genotypes [138].

4. CONCLUSION AND PROSPECT

The properties of natural phytochemicals, their effects on the
body, and the study of their entry into the body are crucial. To
date, poor oral bioavailability and inefficient intestinal absorption
have been a hindrance to the development of natural substances.
Therefore, in the early stages of the discovery and development of
natural phytochemicals, several in vitro culture systems simulating
intestinal epithelium have been widely used to predict intestinal
permeability more quickly, while reducing animal testing and thus
accelerating the development of natural phytochemical foods [139].
2D models are currently the most standardized platforms because
they allow for cost-effectiveness and high-throughput screening.
In particular, Caco-2 cells have been accepted as the gold
standard because of their ability to approximate the intestinal
cell phenotype. These conventional cell cultures have a good
quantitative correlation with the absorption fraction of natural
phytochemicals transported through cells in humans, but the results
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were not accurate enough due to colonic origin and changes in
the expression of basic metabolic and transport proteins. The
correlation between co-cultured cells and in vivo data has improved.
With increasing evidence that 3D multi-cell models in vitro
can better reproduce the in vivo environment, models combined
with fluid dynamics systems have made great progress in GIT
research in recent years. However, there are many challenges to
obtaining repeatable tests using these platforms. Therefore, the
future realization of these aspects, as well asmore vision-likemodels
that include the entire microbiome, mucus layer, and other cell
types ( immune cells), will increase the robustness and predictive
potential of these systems.
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